SUPER HEAVY NUCLEI

Yuri Oganessian

TIAS (TAMU) and FLNR(JINR)

Cyclotron Institute of the TAMU July 21, 2015, Texas, USA

We will discuss:

• How big a nucleus may be,

• What is a maximum number of protons and neutrons it may contain,

• What is the limit of atomic nuclei mass and how it is determined.

In the first attempts of describing the properties of nuclear matter (1928) a daring supposition was made that atomic nucleus is an object similar to a drop of positively charged liquid, the so called

G. Gamow 1928

Liquid-Drop Model of Nucleus

Semi-empirical mass formula (C.F. von Weizsäcker, 1932) structure $E(A,Z) = a_1 A - a_2 A^{2/3} - a_3 Z^2 / A^{1/3} - a_4 (A/2 - Z)^2 / A + a_5 A^{-3/4}$ ŵ asymmetry pairing volume term term term surface Exp. 8.5 term LDM Coulomb Term 8.0 Е_{с в}/А, МэВ Liquid Drop Model 7.5 10 20 30 A Ū

50

100

150

200

250

A

K.A. Petrzhak

Chart of nuclides

Nuclear shells (macro-microscopic approach)

Microscopic corrections to the macroscopic nuclear deformation energy

Potential energy (MeV)

Predictions of the microscopic theory

R. Smolańczuk, Phys. Rev. C 56 (1997) 812

Reactions of Synthesis

Reactions of synthesis

Synthesis of the SHE

REACTIONS OF SYNTHESIS	TARGETS						
48Ca - PROJECTILES	isotope	Target thickness mg/cm ²	lsotope enrichment %	Setup			
	233U	0.44	99.92	DGFRS			
Energy:	237Np	0.35	99.3	DGFRS			
235-250 MeV	238U	0.35	99.3	DGFRS			
Intensity	242Pu	0.40	99.98	DGFRS			
1.0-1.2 pμA		1.40	99.98	Chem.			
	243Am	0.36	99.9	DGFRS			
Consumption:		1.20	99.9	Chem.			
0.5 mg/h	244Pu	0.38	98.6	DGFRS			
Beam dose:	245Cm	0.35	98.7	DGFRS			
up to 4.5.10 ¹⁹	248Cm	0.35	97.4	DGFRS			
-	249Bk	0.35	≥90	DGFRS			
	249Cf	0.30	98.3	DGFRS			

Contour map of the calculated half-lives as $LogT_{1/2}$ (in seconds) and decay modes of nuclei with different proton and neutron numbers

SCIENTIFIC AMERICAN

Voyage to SUPERHEAVY Island

Decay Properties

Z-even Nuclei

Decay Chains of the Isotopes of Element 114

104

Even Z Nuclei

1999 - 2005

²⁴⁹Cf + ⁴⁸Ca

Alpha - decay

Spontaneous fission

even-even isotopes

June, 2013

DGFRS + TASCA

RIKEN (Japan)

Map of the nuclides with $Z \ge 104$

Confirmations of DGFRS data

2007 - 2014

A/Z	Setup	Laboratory	Publications
²⁸³ 112	SHIP	GSI Darmstadt	Eur. Phys. J. A32, 251 (2007)
²⁸³ 112	COLD	PSI-FLNR (JINR)	NATURE 447, 72 (2007)
^{286, 287} 114	BGS	LBNL (Berkeley)	P.R. Lett. 103, 132502 (2009)
^{288, 289} 114	TASCA	GSI – Mainz	P.R. Lett. 104, 252701 (2010)
^{292, 293} 116	SHIP	GSI Darmstadt	Eur. Phys. J. A48, 62 (2012)
^{287, 288} 115	TASCA	GSI – Mainz	P.R. Lett. 111, 112502 (2013)
^{293, 294} 117	TASCA	GSI – Mainz	P.R. Lett. 112, 172501 (2014)
^{292, 293} 116	GARIS	RIKEN Tokyo	Accelerator Progress Rep. (2013)

With Z >40% larger than that of Bi, the heaviest stable element, we see an impressive extension in nuclear survivability.

Although SHN are at the limits of Coulomb stability,

- •shell stabilization lowers ground-state energy,
- •creates a fission barrier,
- •and thereby enables SHN to exist.

The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification

Super Heavy Atoms

Chemistry of the SHE

Are super-heavy atoms different from lighter species?

Relativistic Contraction

Periodic Table based on Dirac-Fock calculations (non-relativistic)

P. Pyykkö Phys. Chem. Chem. Phys. 13, 161-168 (2011)

What are chemical properties of super-heavy elements?

more inert \rightarrow

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Lanthanum	Cerium	Praseody-	Neody-	Promet-	Samari-	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	La	Ce	mium Pr	mium Nd	hium Pm	um Sm	Eu	Gd	Tb	Ďy J	Ho	Er	Tm	Yb	Lu
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides >	Actinium	Thorium	Protacti-	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendele-	Nobelium	Lawren-
	Ac	Th	^{nium} Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	vium Md	No	cium Lr

T_{ads} Hg and Element Z=112 on Quartz and Gold

The Discovery of the SHE Raised a Questions

obviously...

the field of the research is limited by the production of super heavy nuclei

Everything we know about SH-nuclei produced in ⁴⁸Ca-induced reactions:

...allow us to think about a SHE-Factory with production rate about 100 times higher than what we currently have

High Flux Isotope Reactor at ORNL

Ζ

96

95

94

DC-280 Cyclotron

Projectile	Ion Charge	Intensity
²⁰ Ne	3+ - 4+	1.1014 pps
⁴⁸ Ca	7+ - 8+	6.10¹³ pps
⁵⁰ Ti	7+ - 9+	3·10 ¹³ pps
⁷⁰ Zn	3+ - 4+	2.10¹³ pps
⁸⁶ Kr	12+ - 15+	3·10 ¹³ pps
¹⁰⁰ Mo	13+ - 17+	2·10 ¹² pps
¹²⁴ Sn	17+ - 21+	2·10 ¹² pps
¹³⁶ Xe	18+ - 23+	2·10 ¹³ pps
²⁰⁸ Pb	28+ - 35+	1.10 ¹² pps
²³⁸ U	32+ - 40+	1·10 ¹¹ pps

Novokramatorks Ukraine

3)

so.

•

Yu/O EXON- 2014, Sept.8, 2014, Kaliningrad, RF

August 2014

August 2014, Dubna

Exp

N

1 1

